Semantic Composition and Decomposition: From Recognition to Generation
نویسنده
چکیده
Semantic composition is the task of understanding the meaning of text by composing the meanings of the individual words in the text. Semantic decomposition is the task of understanding the meaning of an individual word by decomposing it into various aspects (factors, constituents, components) that are latent in the meaning of the word. We take a distributional approach to semantics, in which a word is represented by a context vector. Much recent work has considered the problem of recognizing compositions and decompositions, but we tackle the more difficult generation problem. For simplicity, we focus on noun-modifier bigrams and noun unigrams. A test for semantic composition is, given context vectors for the noun and modifier in a noun-modifier bigram (red salmon), generate a noun unigram that is synonymous with the given bigram (sockeye). A test for semantic decomposition is, given a context vector for a noun unigram (snifter), generate a noun-modifier bigram that is synonymous with the given unigram (brandy glass). With a vocabulary of about 73,000 unigrams from WordNet, there are 73,000 candidate unigram compositions for a bigram and 5,300,000,000 (73,000 squared) candidate bigram decompositions for a unigram. We generate ranked lists of potential solutions in two passes. A fast unsupervised learning algorithm generates an initial list of candidates and then a slower supervised learning algorithm refines the list. We evaluate the candidate solutions by comparing them to WordNet synonym sets. For decomposition (unigram to bigram), the top 100 most highly ranked bigrams include a WordNet synonym of the given unigram 50.7% of the time. For composition (bigram to unigram), the top 100 most highly ranked unigrams include a WordNet synonym of the given bigram 77.8% of the time.
منابع مشابه
Face Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملDisguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملLearning Semantic Composition to Detect Non-compositionality of Multiword Expressions
Non-compositionality of multiword expressions is an intriguing problem that can be the source of error in a variety of NLP tasks such as language generation, machine translation and word sense disambiguation. We present methods of non-compositionality detection for English noun compounds using the unsupervised learning of a semantic composition function. Compounds which are not well modeled by ...
متن کاملAccelerating the Composite Power System Planning by Benders Decomposition
This paper presents an application of Benders decomposition to deal with the complexities in the simultaneous Generation Expansion Planning (GEP) and Transmission Expansion Planning (TEP). Unlike the power system operation fields of study, the power system planning methods are not expected to be fast. However, it is always preferable to speed up computations to provide more analysis options for...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1405.7908 شماره
صفحات -
تاریخ انتشار 2014